
Implementation of Alpha-Beta Pruning Algorithm
for Backgammon Game Engine

Muhammad Luqman Hakim (13523044)
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13523044@std.stei.itb.ac.id muhluqhakim@gmail.com

Abstract—This technical report presents an implementation of
a backgammon-playing AI that utilizes the Branch and Bound
strategy, specifically through alpha-beta pruning applied to an
expectiminimax search tree, to make strategic decisions in a
probabilistic environment. Backgammon is a complex, stochastic,
two-player board game where optimal decision-making must
account not only for the current board state but also for the
uncertainty introduced by dice rolls. This AI system models
the game as a combination of deterministic player moves and
probabilistic dice outcomes, structured in a game tree. By
using alpha-beta pruning, the AI efficiently explores this tree
by discarding suboptimal branches that cannot affect the final
outcome, reducing the computational burden without sacrificing
performance. Additionally, the use of domain-specific heuristic
functions—such as pip count and blockade potential—enhances
the AI’s ability to evaluate non-terminal positions and choose
moves that maximize strategic advantage. This report outlines the
theoretical foundation, design, implementation, and evaluation of
this approach.

Index Terms—Backgammon, Game AI, Branch and Bound,
Alpha-Beta Pruning, Expectiminimax, Heuristic Evaluation,
Probabilistic Games, Game Tree Search, Decision Making, Arti-
ficial Intelligence

I. INTRODUCTION

Introduction
Backgammon is one of the oldest known board games,

with its modern form originating in 17th-century England [1].
The game presents a compelling challenge for algorithmic
decision-making due to its integration of stochastic elements
and strategic planning. The central problem addressed in this
report is developing an artificial intelligence agent capable
of competitive performance in backgammon by effectively
managing both probabilistic outcomes and adversarial strategic
considerations. Unlike deterministic games such as chess,
backgammon requires optimal decisions under uncertainty,
where each move must account for probabilistic dice rolls
while anticipating opponent responses. This stochastic com-
ponent introduces significant complexity, as players must
evaluate expected outcomes across multiple possible dice com-
binations rather than deterministic sequences. The objective is
to develop and evaluate a search-based artificial intelligence
approach that accommodates randomness while maintaining
computational efficiency for real-time gameplay.

Backgammon is a race game where two players compete
to move fifteen checkers from start to finish before their

opponent [2]. The game combines tactical positioning with
probabilistic outcomes, requiring strategic decisions under
uncertainty created by dice rolls. Players must traverse the
board according to dice-determined movement rules, with the
ultimate objective being complete checker removal. The game
incorporates strategic elements including piece capture, defen-
sive blocking formations, and risk management in positioning.
As a zero-sum game, any advantage gained by one player
corresponds directly to the opponent’s disadvantage, creating
a strictly competitive environment suitable for adversarial
artificial intelligence techniques.

The algorithmic foundation centers on Expectiminimax,
an extension of classical Minimax designed for games with
probabilistic elements. Traditional Minimax constructs game
trees by alternating between maximizing and minimizing
nodes representing optimal player choices under deterministic
conditions. Expectiminimax introduces chance nodes to model
random events, creating trees that alternate between max nodes
for agent decisions, min nodes for opponent responses, and
chance nodes for dice outcomes. Each chance node contains
branches for possible dice combinations weighted by prob-
ability, with evaluation computed through expected values
across all outcomes. Computational efficiency is achieved
through Alpha-Beta Pruning, which reduces evaluated nodes
without compromising decision optimality. The mechanism
maintains alpha and beta threshold values representing the
best discovered values for maximizing and minimizing players
respectively. When a node’s value falls outside the alpha-beta
window, remaining branches can be safely eliminated. This
optimization is particularly valuable for Expectiminimax trees,
where branching factors increase substantially due to chance
nodes representing dice combinations.

Heuristic evaluation functions provide position assessments
when exhaustive search becomes computationally infeasible.
These functions must capture essential strategic elements
determining position strength, including piece distribution,
defensive formations, offensive opportunities, and endgame
considerations. Function quality directly impacts agent perfor-
mance, as inaccurate assessments lead to suboptimal decisions
despite optimal search algorithms.

The implementation addresses backgammon’s combinato-
rial complexity through Expectiminimax search with Alpha-
Beta Pruning and domain-specific heuristic evaluation func-



tions. The large branching factor due to dice outcomes and
movement possibilities necessitates careful algorithmic de-
sign for practical performance. Subsequent sections detail
game state representation, backgammon rules and mechanics,
heuristic evaluation methodologies, and experimental evalu-
ation across various search depths and optimization param-
eters.RetryClaude can make mistakes. Please double-check
responses.

II. RULES OF BACKGAMMON

Backgammon is played on a board consisting of twenty-
four narrow triangular points arranged in two opposing rows of
twelve points each. The board is divided into four quadrants,
with each player having a home board and outer board on
their respective side. Players begin the game with fifteen
checkers positioned according to a standard initial setup, where
each player has two checkers on their twenty-four point, five
checkers on their thirteen point, three checkers on their eight
point, and five checkers on their six point. The objective is to
move all checkers into the home board and subsequently bear
them off the board entirely before the opponent accomplishes
the same goal.

Movement in backgammon is governed by the roll of two
six-sided dice, with each die representing an independent
movement opportunity that must be utilized if legally possible.
Players move their checkers in opposite directions around
the board, with each checker advancing a number of points
equal to the value shown on one die. When a player rolls
doubles, they receive four moves of the indicated value rather
than two. Each checker must land on a point that is either
empty, occupied by the player’s own checkers, or occupied
by exactly one opponent checker. A point occupied by two or
more opponent checkers is considered blocked and cannot be
used as a landing destination.

The hitting mechanism allows players to capture opponent
checkers that occupy points alone. When a checker lands on a
point occupied by a single opponent checker, the opponent’s
checker is hit and placed on the bar, which is the raised ridge
running down the center of the board. A player with checkers
on the bar must enter all such checkers into their opponent’s
home board before making any other moves. Entry from the
bar is accomplished by rolling the dice and moving the checker
to a point in the opponent’s home board corresponding to the
die value, provided that point is not blocked by two or more
opponent checkers. If a player cannot enter a checker from the
bar because all corresponding points are blocked, they forfeit
their turn.

The blocking strategy involves blocking points, which
prevents opponent checkers from landing on those points.
A sequence of consecutive blocked points forms a prime,
which can significantly impede opponent movement. The most
effective prime consists of six consecutive blocked points,
which completely prevents opponent checkers from passing
through that section of the board. Strategic blocking requires
careful consideration of checker distribution and timing, as
overly defensive play can result in insufficient progress.

The bearing off phase begins when a player has successfully
moved all fifteen checkers into their home board. During this
phase, checkers are removed from the board according to dice
rolls, where each die value corresponds to the numbered point
in the home board. A checker on the six point can be borne off
with a roll of six, a checker on the five point with a roll of five,
and so forth. If no checker occupies the point corresponding
to a die value, the player must make a legal move with a
checker from a higher-numbered point. If no checkers remain
on higher-numbered points, the player may bear off a checker
from the highest occupied point. The bearing off process
continues until all checkers are removed from the board.

The game concludes when one player successfully bears
off all fifteen checkers. A normal win occurs when the
opponent has borne off at least one checker, while a gammon
results when the opponent has not borne off any checkers.
A backgammon, the most valuable win, occurs when the
opponent has not borne off any checkers and still has checkers
in the winner’s home board or on the bar. These different
victory conditions affect scoring in match play and determine
the stakes in money games.

The doubling cube introduces an additional strategic ele-
ment that allows players to increase the stakes during the
game. The cube displays the values two, four, eight, sixteen,
thirty-two, and sixty-four, representing the current stake mul-
tiplier. Either player may offer a double before rolling the
dice, proposing to double the current stakes. The opponent
must either accept the double and continue playing at the
higher stakes, or decline and immediately forfeit the game
at the current stake level. Once a double is accepted, only the
player who accepted the double may offer the next double,
creating a sequence of ownership that alternates between
players throughout the game.

Strategic considerations in backgammon encompass mul-
tiple competing objectives that must be balanced according
to the current position and game phase. Early game strategy
typically focuses on establishing advanced anchor points in
the opponent’s board while developing home board structure
for potential attacks. The middle game emphasizes the tension
between safety and timing, where players must decide whether
to prioritize defensive positioning or aggressive advancement
based on the race situation and tactical opportunities. Late
game strategy centers on the bearing off process, where
mathematical calculations of pip counts and efficient checker
distribution become paramount. Throughout all phases, players
must continuously assess risk-reward trade-offs, considering
both immediate tactical opportunities and long-term positional
advantages in their decision-making process.

III. ALGORITHM OVERVIEW

The artificial intelligence agent for backgammon employs
a sophisticated search algorithm that combines game-theoretic
principles with computational optimization techniques to han-
dle the game’s inherent probabilistic nature. The core algorith-
mic framework is built upon Expectiminimax search enhanced
with Alpha-Beta Pruning, creating a robust system capable of



evaluating complex game positions while maintaining compu-
tational tractability for real-time gameplay.

A. Expectiminimax

Expectiminimax represents a fundamental extension of the
classical Minimax algorithm specifically designed to accom-
modate games that incorporate stochastic elements alongside
strategic decision-making [3]. The algorithm addresses the
limitation of traditional Minimax, which assumes deterministic
outcomes and perfect information, by introducing probabilistic
reasoning into the search process. In deterministic games
such as chess or checkers, the game tree consists solely of
decision nodes where players alternate between maximizing
and minimizing their respective outcomes. However, backgam-
mon’s inclusion of dice rolls necessitates a more sophisticated
approach that can properly model and evaluate uncertain
outcomes.

The Expectiminimax framework constructs a game tree that
alternates between three distinct types of nodes, each serving a
specific purpose in modeling the game’s structure. The value
of each node type is computed according to the following
formulas:

For max nodes representing the maximizing player’s deci-
sions:

V (n) = max
a∈A(n)

V (child(n, a)) (1)

For min nodes representing the minimizing player’s deci-
sions:

V (n) = min
a∈A(n)

V (child(n, a)) (2)

For chance nodes representing probabilistic outcomes:

V (n) =
∑

o∈O(n)

P (o) · V (child(n, o)) (3)

where A(n) represents the set of available actions at node n,
O(n) represents the set of possible outcomes at chance node
n, and P (o) represents the probability of outcome o [4].

Max nodes represent decision points for the artificial intel-
ligence agent, where the algorithm seeks to select the move
that maximizes the expected outcome given the current game
state. These nodes correspond to positions where the agent
has rolled the dice and must choose how to move its checkers
according to the rolled values. The evaluation at max nodes
involves comparing all legal moves available for the given dice
roll and selecting the option that yields the highest expected
value when considering all possible future developments.

Min nodes represent the opponent’s decision points, where
the algorithm assumes the opponent will select moves that
minimize the agent’s expected outcome. This assumption
reflects the adversarial nature of backgammon, where opti-
mal play requires anticipating that the opponent will make
the strongest possible responses to the agent’s moves. The
evaluation at min nodes involves identifying the opponent’s
best available move, which from the agent’s perspective rep-
resents the worst-case scenario that must be planned for. This

adversarial modeling ensures that the agent’s strategy remains
robust against competent opposition.

Chance nodes constitute the unique feature that distin-
guishes Expectiminimax from classical Minimax, representing
the probabilistic outcomes of dice rolls. Each chance node
contains branches corresponding to all possible dice combina-
tions, with each branch weighted according to the probability
of that specific outcome occurring. In backgammon, there are
thirty-six possible dice combinations when rolling two six-
sided dice, though only twenty-one distinct outcomes exist due
to the commutative property of the dice values. The probability
distribution for dice outcomes is given by:

P (dice outcome (i, j)) =

{
1
36 if i = j (doubles)
2
36 = 1

18 if i ̸= j (non-doubles)
(4)

The evaluation of chance nodes involves computing the
expected value across all possible dice outcomes, weighted by
their respective probabilities. This calculation ensures that the
algorithm makes decisions based on probabilistic reasoning
rather than assuming specific dice sequences. The expected
value computation at chance nodes represents a critical com-
ponent of the algorithm’s ability to handle uncertainty, as it
allows the agent to make informed decisions even when future
dice rolls cannot be predicted deterministically.

B. Alpha-Beta Pruning

Alpha-Beta Pruning serves as a crucial optimization tech-
nique that dramatically reduces the computational complexity
of the Expectiminimax search without affecting the quality of
the final decision. The pruning mechanism operates by main-
taining two threshold values throughout the search process that
represent bounds on the minimax value of the current node [4].
Alpha represents the best value that the maximizing player can
guarantee along the current path from the root to the present
node, while beta represents the best value that the minimizing
player can guarantee along the same path.

The pruning conditions are formally defined as follows. At
a min node, pruning occurs when:

v ≤ α (5)

At a max node, pruning occurs when:

v ≥ β (6)

where v is the current node value, α is the best value for
the maximizer, and β is the best value for the minimizer.

The pruning process exploits the property that if a node’s
value is determined to lie outside the current alpha-beta
window, then the remaining unexplored branches of that node
cannot possibly influence the final decision at the root. When
the algorithm discovers that a min node has a value less than
or equal to alpha, it can immediately terminate the search of
that node’s remaining children, since the maximizing player
would never choose a path that leads to such a poor outcome.
Similarly, when a max node has a value greater than or equal



Algorithm 1: Expectiminimax Algorithm
Data: Current game state s, search depth d, player

type player
Result: Best value for the current position
if d = 0 or s is terminal then

return Evaluate(s);
end
switch player do

case MAX do
bestV alue← −∞;
foreach action a in GetLegalMoves(s) do

newState← ApplyMove(s, a);
value← Expectiminimax(newState,
d− 1, CHANCE);
bestV alue← max(bestV alue, value);

end
return bestV alue;

end
case MIN do

bestV alue← +∞;
foreach action a in GetLegalMoves(s) do

newState← ApplyMove(s, a);
value← Expectiminimax(newState,
d− 1, CHANCE);
bestV alue← min(bestV alue, value);

end
return bestV alue;

end
case CHANCE do

expectedV alue← 0;
foreach dice outcome o in

GetPossibleDiceOutcomes() do
newState← ApplyDiceRoll(s, o);
value← Expectiminimax(newState,
d− 1, GetOpponent(s.currentPlayer));
expectedV alue←
expectedV alue+ P (o)× value;

end
return expectedV alue;

end
end

to beta, the search can be terminated because the minimizing
player would never allow the game to reach a state where the
maximizing player could achieve such a favorable result.

The alpha and beta values are updated during the search
process according to the following rules:

α = max(α, v) at max nodes (7)
β = min(β, v) at min nodes (8)

The effectiveness of Alpha-Beta Pruning depends signifi-
cantly on the order in which moves are explored during the
search process. When better moves are examined first, the
alpha and beta bounds become tighter more quickly, leading to

Algorithm 2: Expectiminimax with Alpha-Beta Prun-
ing
Data: Current game state s, search depth d, player

type player, α, β
Result: Best value for the current position
if d = 0 or s is terminal then

return Evaluate(s);
end
switch player do

case MAX do
bestV alue← −∞;
foreach action a in GetLegalMoves(s) do

newState← ApplyMove(s, a);
value← Expectiminimax(newState,
d− 1, CHANCE, α, β);
bestV alue← max(bestV alue, value);
α← max(α, value);
if β ≤ α then

break ; // Beta cutoff
end

end
return bestV alue;

end
case MIN do

bestV alue← +∞;
foreach action a in GetLegalMoves(s) do

newState← ApplyMove(s, a);
value← Expectiminimax(newState,
d− 1, CHANCE, α, β);
bestV alue← min(bestV alue, value);
β ← min(β, value);
if β ≤ α then

break ; // Alpha cutoff
end

end
return bestV alue;

end
case CHANCE do

expectedV alue← 0;
foreach dice outcome o in

GetPossibleDiceOutcomes() do
newState← ApplyDiceRoll(s, o);
value← Expectiminimax(newState, d− 1,

GetOpponent(s.currentPlayer), α, β);
expectedV alue←
expectedV alue+ P (o)× value;

end
return expectedV alue;

end
end



more aggressive pruning and consequently better performance.
The best-case scenario for Alpha-Beta Pruning reduces the
effective branching factor from b to

√
b, where b is the average

branching factor, resulting in a time complexity improvement
from O(bd) to O(bd/2) for a search of depth d [3].

This principle motivates the use of move ordering heuris-
tics that attempt to prioritize the exploration of moves that
are likely to be optimal or near-optimal. In the context of
backgammon, effective move ordering might prioritize moves
that advance checkers safely, create or extend blocking struc-
tures, or improve overall position mobility. Common move
ordering techniques include:

Move Score = w1 · Safety + w2 · Advancement
+w3 · Blocking + w4 · Hitting

(9)

where wi are weights determined through empirical analysis
or machine learning techniques.

The integration of Alpha-Beta Pruning with Expectimini-
max requires careful consideration of how pruning decisions
interact with chance nodes. Traditional Alpha-Beta Pruning
applies directly to the max and min nodes in the search tree,
but chance nodes require special handling since they repre-
sent probabilistic rather than adversarial choices. The pruning
bounds must be propagated through chance nodes using the
expected value calculations, ensuring that the optimization
remains sound while preserving the probabilistic reasoning
that makes Expectiminimax suitable for stochastic games.

The computational complexity of the combined Expectim-
inimax with Alpha-Beta Pruning approach depends on several
factors including the search depth, the branching factor at
each node type, and the effectiveness of the pruning. In
backgammon, the branching factor for chance nodes is fixed
at twenty-one distinct dice outcomes, while the branching
factor for decision nodes varies significantly based on the
current position and can range from very few legal moves
in constrained positions to dozens of possible moves in open
positions. The best time complexity can be expressed as:

O(d) = O(b
d/2
chance · b

d/2
decision) (10)

where bchance = 21 is the branching factor for chance
nodes, bdecision is the average branching factor for decision
nodes, and d is the search depth.

IV. IMPLEMENTATION

A. Game State Modeling and Expectiminimax Mapping

Backgammon is modeled as a game tree where each node
represents a complete game state s = ⟨B, p, d⟩, with B en-
coding the board configuration across all 24 points, p ∈ {1, 2}
indicating the current player, and d = (d1, d2) representing
the dice roll. The critical insight lies in recognizing that
backgammon alternates between deterministic decision phases
where players choose moves and stochastic chance phases
where dice outcomes determine available actions.

The game tree structure consists of two interleaved node
types that form the backbone of the expectiminimax approach.
Decision nodes VD represent positions where players must
select from available move sequences, while chance nodes
VC represent the probabilistic dice rolling phase. This creates
a repeating pattern where each player’s turn begins with
a chance node that determines the dice outcome, followed
immediately by a decision node where the player selects
moves based on those dice values.

The expectiminimax algorithm naturally maps onto this
structure by treating decision nodes with standard mini-
max evaluation and chance nodes with expected value com-
putation. At decision nodes, the maximizing player seeks
maxm∈M(s,d) V (δ(s,m)) while the minimizing player pur-
sues minm∈M(s,d) V (δ(s,m)), where M(s, d) represents all
legal move sequences for dice roll d and δ(s,m) denotes the
resulting state after executing move m. At chance nodes, the
expected value is computed as

∑
d∈D P (d) · V (child(s, d)),

where D encompasses all 21 distinct dice combinations and
P (d) the probability of each dice roll.

B. Heuristic Evaluation Function

1) Pip Count Heuristic: The pip count heuristic Hpip(s)
measures the racing advantage between players by comput-
ing the total distance all checkers must travel to bear off.
This fundamental metric captures the pure racing aspect of
backgammon, where the player with fewer pips remaining
holds the advantage in positions where contact play has ended
or when both players are running their back checkers to safety.

For player p, the pip count is calculated as:

Pip(p) =
24∑
i=1

checkersp(i) · distance(i) (11)

where checkersp(i) denotes the number of player’s checkers
on point i and distance(i) represents the minimum distance
from point i to bearing off. The pip count heuristic then
becomes

Hpip(s) = Pip(opponent)− Pip(current player) (12)

, making positive values favorable for the current player. This
heuristic becomes increasingly important as the game pro-
gresses toward the endgame, where positional considerations
give way to pure racing dynamics.

2) Blot Vulnerability Heuristic: The blot vulnerability
heuristic Hblots(s) quantifies the exposure risk by evaluating
unprotected checkers that can be hit by the opponent. A blot
represents a single checker on a point, making it vulnerable to
attack and potentially sending it to the bar, which significantly
disrupts the player’s development and timing.

Hblots(s) =
∑
i

blot(i, opponent)−
∑
i

blot(i, current player)

(13)
where blot(i) is 1 when exactly one of the player’s checker

is in that point and 0 otherwise. The heuristic indicates that



blots represent a liability for the current player, hence the
current (maximizing player) should minimize his number of
blots. This heuristic is particularly crucial during the opening
and middle game phases when contact between opposing
forces is frequent and tactical hitting opportunities abound.

3) Blockade Strength Heuristic: The blockade strength
heuristic Hblockade(s) evaluates the defensive and offensive
potential of consecutive occupied points, which form prime
structures that restrict opponent movement. Blockades serve
dual purposes in backgammon strategy: they prevent opponent
checkers from advancing and create safe landing zones for the
player’s own checkers.

The blockade evaluation rewards longer consecutive se-
quences of controlled points:

Hblockade(s) = max (length of blockade(current player))
−max (length of blockade(opponent)) (14)

The most valuable blockades are those that form a continu-
ous prime of six points, creating an impenetrable barrier that
completely blocks opponent movement.

C. Combined Heuristic Framework

These three heuristic components can be effectively com-
bined into a unified evaluation function that captures the
multifaceted nature of backgammon strategy. The combined
approach takes the form:

H(s) = w1 ·Hpip(s) + w2 ·Hblots(s) + w3 ·Hblockade(s)
where the weights w1, w2, and w3 can be dynamically

adjusted based on the current game phase and position char-
acteristics. During opening play, blot safety and blockade
formation typically receive higher emphasis, while racing el-
ements become dominant in endgame scenarios. The adaptive
weighting allows the evaluation function to shift strategic
priorities as the game evolves, ensuring that the AI’s decision-
making remains contextually appropriate throughout all phases
of play. This modular approach also facilitates the incorpo-
ration of additional heuristic components as needed, making
the evaluation framework extensible and refinable through
empirical testing and domain expertise.

V. RESULT

The experimental evaluation demonstrates that the alpha-
beta pruned expectiminimax algorithm provides improvements
over the baseline greedy approach, even when constrained
to shallow search depths. The performance metrics were ob-
tained through testing against a greedy algorithm baseline that
employed identical heuristic evaluation functions, ensuring
that any observed performance differences could be attributed
solely to the search strategy rather than evaluation function
disparities.

With a maximum search depth of 2 plies and 500 inde-
pendent game trials, the Branch and Bound implementation
achieved a win rate of 56.4%(p = 0.002) against the greedy
baseline. This represents a meaningful competitive advantage,
with the AI system winning 282 out of 500 games compared to

the greedy algorithm’s 218 victories. The average normalized
score differential further substantiates this performance gap,
with the alpha-beta implementation averaging 0.592 points per
game compared to the greedy algorithm’s 0.458 points per
game. This 29.2% advantage in average scoring demonstrates
consistent strategic superiority across the test suite.

The statistical significance of these results is particularly
noteworthy given the limited computational depth employed.
The shallow 2-ply search constraint was deliberately chosen
to evaluate the algorithm’s efficiency in time-critical scenarios
while maintaining practical applicability for real-time game-
play. Despite this limitation, the expectiminimax approach
with alpha-beta pruning successfully identified superior move
sequences that the myopic greedy strategy failed to discover.

In addition to its performance against the greedy baseline,
the algorithm was also evaluated against a purely stochastic
opponent that selected moves uniformly at random. In this
configuration, the alpha-beta pruned expectiminimax agent
demonstrated overwhelming dominance, achieving a win rate
of 95.4% over 500 simulated matches. The disparity in ef-
fectiveness is further highlighted by the average normalized
score: the algorithm achieved a mean score of 2.0 points
per game, while the random agent averaged just 0.048. This
result underscores the algorithm’s ability to consistently ex-
ploit uncoordinated play patterns, identifying and capitalizing
on suboptimal moves with high precision. The pronounced
scoring gap reflects not only a high frequency of wins but
also a consistent pattern of decisive victories. These findings
validate the robustness of the expectiminimax strategy in
both adversarial and chaotic environments, where the absence
of coherent opposition allows the heuristic-guided search
to dominate through calculated positioning and probabilistic
foresight.

The domain-specific heuristic functions, including pip count
differential, positional advantage metrics, and blockade po-
tential assessment, proved effective in guiding the search
toward strategically sound positions. The integration of these
heuristics with the probabilistic expectiminimax framework
successfully balanced immediate tactical gains against longer-
term positional advantages, contributing to the observed per-
formance improvements.

VI. CONCLUSION

This study has shown that framing Backgammon decision-
making as a bounded expectiminimax search enhanced by
alpha-beta pruning yields a practical yet robust AI capable
of strategic play under uncertainty. The Branch and Bound
paradigm, realized through alpha-beta pruning, effectively
constrains the search space, allowing the agent to reach
deeper evaluation horizons and thereby improve move qual-
ity. Heuristic functions capturing pip distance and blockade
strength provide meaningful guidance at depth-limited leaf
nodes, producing outcomes that outperform simpler evaluators.
Future work will explore adaptive heuristics via reinforcement
learning, transposition tables for state re-use, and dynamic
depth adjustment based on real-time performance metrics,



further advancing the efficacy of algorithmic strategies in
stochastic adversarial games like Backgammon.

VII. ACKNOWLEDGMENT

I would like to express my sincere gratitude to God
Almighty for His guidance, who made the completion of this
paper possible.

REFERENCES

[1] Cram, D., & Forgeng, J. L. (2017). Francis Willughby’s Book of Games.
https://doi.org/10.4324/9781315255040

[2] Parlett, D. S. (1999). The Oxford history of board games.
http://ci.nii.ac.jp/ncid/BA41511831

[3] Russell, S. J., Norvig, P., & Davis, E. (2010). Artificial intelligence: A
Modern Approach. Prentice Hall.

[4] Michie, D. (1966). GAME-PLAYING AND GAME-
LEARNING AUTOMATA. In Elsevier eBooks (pp. 183–200).
https://doi.org/10.1016/b978-0-08-011356-2.50011-2

APPENDIX A

COMPLETE IMPLEMENTATION OF THE PROGRAM

The complete implementation of the program can be ac-
cessed at https://github.com/carasiae/bg-pmo

STATEMENT

I hereby declare that the paper I wrote is my own writing,
not an adaptation, or translation of someone else’s paper, and

not plagiarized.

Bandung, 2 January 2025

Muhammad Luqman Hakim

https://github.com/carasiae/bg-pmo

	Introduction
	Rules of Backgammon
	Algorithm Overview
	Expectiminimax
	Alpha-Beta Pruning

	Implementation
	Game State Modeling and Expectiminimax Mapping
	Heuristic Evaluation Function
	Pip Count Heuristic
	Blot Vulnerability Heuristic
	Blockade Strength Heuristic

	Combined Heuristic Framework

	Result
	Conclusion
	Acknowledgment
	References

